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Abstract
In this paper, we study the certain qualitative properties of a new anisotropic
continuum traffic flow model in which the dimensionless parameter or
anisotropic factor controls the non-isotropic character and diffusive influence.
We discussed the travelling wave solution for our model and find out the
condition for the shock wave. Shock and rarefaction waves are obtained
from the new model and are consistent with the diverse nonlinear dynamical
phenomena observed in a real traffic flow. However, our model for large values
of anisotropic parameter removes the discontinuity as pointed out by Berg
et al (2000 Phys. Rev. E 61 1056). The nonlinear theory of the cluster effect in
a traffic flow i.e., the effect of appearance of a region of high density and low
average velocity of vehicles in an initially homogeneous flow, is also discussed.
It is shown that an appearance of a localized perturbation of finite amplitude in
the stable homogeneous flow can lead to a self-formation of a local cluster of
vehicles. It is also been observed that the cluster effect from our model shows
a good agreement with the results of Kerner and Konhäuser (1994 Phys. Rev.
E 50 54) and Jiang et al (2002 Trans. Res. B 36 405).

PACS numbers: 46.05.+b, 45.70.Vn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Traffic flow models are used to analyse and predict traffic flow on road networks. Recently,
considerable attention has been paid to traffic flow problems [1, 2]. Apart from experimental
observations, Gerlough et al [3] and Helbing [4] proposed physical models of traffic flow
situations. Continuum models give an overview of the global traffic flow, which is needed for
understanding the collective behaviour of traffic and designing efficient control strategies, and
allow analytical validations. Fundamentals of traffic flow modelling and control are the basic
relationship between three traffic states: flow rate (q), mean velocity (v) and vehicle density (ρ).
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Since the seminal work by Lighthill and Whitham [5] and Prigogine [7] on kinetic theory of
traffic flow, vehicles have often been considered as interacting particles and traffic flow can
be considered as a one-dimensional compressible flow of these particles. Due to analogies
with gas theory [8] and fluid dynamics [5, 7, 9–15], modelling and simulating traffic flow
increasingly attracts the attention of physicists and engineers. The study of continuum models
began with the LWR model developed independently by Lighthill and Whitham [5] and
Richards [6]. The LWR model is known as the simple continuum model in which the
relationships among three aggregate variables (ρ, v and q) are modelled. The LWR model
employs the conservation equation in the following form:

∂ρ

∂t
+

∂q

∂x
= 0. (1)

Equation (1) is not a self-consistent model but needs an additional relation which is
supplemented by the following equation of traffic flow,

q = ρv, (2)

and a relationship between the mean velocity and the traffic density under steady-state uniform
flow

v = ve(ρ), (3)

where ve(ρ) is the equilibrium velocity; x and t represent space and time respectively.
The waves described by the simple continuum model are kinematic waves in the sense

that no dynamic law is used in the model. It is simple yet sufficiently powerful to describe
the most basic traffic flow phenomena such as traffic congestion formation and dissipation in
dense traffic. The consistency and existence of weak solutions of such conservation laws have
been studied by Zhang [16] and Lax [17] respectively.

Although the LWR model makes sensible predictions of propagation and dissipation of
traffic jams, it fails to model two important traffic phenomena: the stop–start wave caused by
instability in traffic flow and forward propagation of disturbances in heavy traffic.

In the past decades, many efforts were devoted to improving the LWR model through
developing higher order models, which use a dynamic equation for the speed (v) to replace
the equilibrium relationship (3). Perhaps the most well-known result of these efforts is the
higher order model developed by Payne [9]. In the Payne model, the fluctuation of speed
around the equilibrium values is allowed; thus, the model is suitable for the description of
non-equilibrium situations such as stop-and-go traffic etc. Payne uses a dynamic equation
for the mean velocity v to replace the equilibrium relationship (3). The dynamic equation of
Payne’s model is derived from car-following theory and has the following form:

∂v

∂t
+ v

∂v

∂x
= ve(ρ) − v

T
+

v′
e(ρ)

2ρT

∂ρ

∂x
, (4)

where T is the relaxation time and v′
e(ρ) = dve(ρ)

dρ
.

Over the past four decades, velocity–density relation (equilibrium function) has been the
subject of intensive research. There are two approaches for stating the equilibrium function:
(i) the classical approach and (ii) the phenomenological approach. The classical approach is a
purely mathematical one and the phenomenological approach is based on assumptions about
the driver’s behaviour with respect to some traffic variables.

Later, several authors [10–12] suggested a considerable number of modifications to
Payne’s model. However, as pointed out by Daganzo [18], it was shown that the Payne model
[9] and the other listed non-equilibrium models [10–12] have two families of characteristic,
along which traffic information is transmitted: one is slower and the other is faster than the speed
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of the traffic stream that carries them. The faster characteristic leads to a gas-like behaviour
(vehicles from behind can force vehicles in front to speed up) [19], and diffusion causes
‘wrong way’ travel [18]. One fundamental principle of the traffic flow is that vehicles are
anisotropic and respond only to the frontal stimuli. Recently, Zhang [13, 14] proposed new non-
equilibrium models and showed that the new models overcome the backward travel problem.
But different from the LWR model, the Payne-type model (higher order models) can be unstable
due to the non-uniformity of the traffic flow. Whitham [20] finds out the stability condition
for the linearized system with a relaxation term. When the Payne-type models are unstable,
Kerner and Konhäuser [21] observed cluster solution. Recently, some authors [22, 23] have
brought about an interesting improvement in the modelling of traffic flow by a hydrodynamic
equation. Coscia [22] developed a mathematical model for the closure of mass conservation
equation. Bürger and Karlsen [23] extended the LWR model in order to include both
abruptly changing road surface conditions and driver’s reaction time and anticipation length.

The problem of traffic congestion is becoming endemic due to increased levels
of populations owning automobiles. The increased number of vehicles on roads causes
intervention in the free movement of traffic and interruption in driving according to one’s
own intention. Traffic congestion in an initially homogeneous traffic flow can be explained
by a cluster effect in a traffic flow [11]. In a real traffic flow almost every driver moving
on a long road occasionally meets with the phenomenon of traffic congestion. Kerner and
Konhäuser [11] have recently confirmed the phenomenon of ‘phantom traffic jam’ by the
investigations of the local cluster effect: a self-formation of a local cluster of vehicles in the
initially homogeneous traffic flow. Indeed, it has been found that, if the density of vehicles
exceeds some critical value, the initially homogeneous traffic flow loses its stability with
respect to a growth of a long wavelength non-homogeneous perturbation. Herrmann and
Kerner [24] discussed in detail the local cluster effect. But in discussing the local cluster
effect, Kerner and Konhäuser [11], in their one-dimensional compressible flow model take
the viscosity and variance of velocity distribution as a constant. Jiang et al [25] developed
a new anisotropic model and discussed the local cluster effect. He has taken the disturbance
propagation speed as a constant. But in real situations all these parameters depend on the traffic
density [12–15, 29]. Recently, some scientists [26–28] investigated the spatial–temporal real
feature of traffic flow phase: free flow, synchronized flow and wide moving jam.

In this paper, we develop a new macroscopic continuum model by introducing a new speed
gradient term as the anticipation term in the equation of motion. It will solve the characteristic
speed problem that exists in the previously developed high-order models [10–12] and therefore
can describe the traffic flow dynamics more realistically.

In section 2, we present an improved continuum model based upon the car-following
model given by Jiang et al [25] and using the series expansion between headway and density
given by Berg et al [15] and discussed some qualitative properties including stability analysis
of the new model. In sections 3 and 4, we study the travelling wave solution and numerical
scheme of the model respectively. We then analyse the shock waves and rarefaction waves in
section 5 and the local cluster effect in section 6. Finally, in section 7, we provide a discussion
on our results.

2. The model and its mathematical properties

2.1. A new continuum model

The car-following model was developed to model the motion of vehicles following each
other on a single lane without overtaking. Car-following models present the only class of
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models that describes each vehicle in a deterministic manner including the response to local
variables such as speed, headway and change of headway. Therefore they seem to be of great
importance with regard to autonomous cruise control systems, which should stabilize the flow
and maximize the flow rate. In this paper, we follow Jiang’s model [25] of road traffic, in
which the acceleration of every vehicle is determined by

dvn(t)

dt
= a[Ve(bn) − vn(t)] + αλ�v (5)

where �v = vn−1(t) − vn(t), with vn−1 and vn being the speed of leading and following
car respectively, Ve is the optimal velocity function, bn is the headway and a is the driver’s
sensitivity which equals the inverse of the driver’s reaction time.

It is generally believed that the headway can be written as a perturbation series [15].
Inserting the approximate expression about headway into equation (5), we can easily obtain
the traffic flow dynamics equation. The full description of this new non-equilibrium theory is
given by a system of partial differential equations with the first being the vehicle conservation
and the second speed dynamics,

∂ρ

∂t
+

∂(ρv)

∂x
= 0 (6)

∂v

∂t
+ v

∂v

∂x
= a[V (ρ) − v] + aV

′
(ρ)

[
1

2ρ

∂ρ

∂x
+

1

6ρ2

∂2ρ

∂x2
− 1

2ρ3

(
∂ρ

∂x

)2
]

− 2βc(ρ)
∂v

∂x
, (7)

where V
′
(ρ) = dV (ρ)

dρ
, β is a non-negative dimensionless parameter and c(ρ) < 0 is the traffic

sound speed given by

c2(ρ) = −aV
′
(ρ)

2
. (8)

Note that if β = 0, then the model reduces to Berg’s model [15] and after leaving the term of(
∂ρ

∂x

)2
, it converts into the model given by Zhou et al [29]. Equation (7) is analogous to the

Zhang model [13]. However, an important difference between that model and the new model
lies in the coefficient of higher order terms.

2.2. Qualitative properties of the model

The system (6), (7) has a similar structure to Berg’s model [15] and Zhou’s models [29] but is
more general than these models. On comparing, we get that our model has an additional term
2βc(ρ) ∂v

∂x
. Moreover, the term c(ρ) varies with OV function. These differences, however, are

not the structural differences. So one would expect that the new model behaves roughly the
same as Berg’s and Zhou’s models and perhaps gives a more accurate description of traffic
flow owing to its greater generality.

We rewrite the system (6), (7) as follows:(
ρ

v

)
t

+

(
v ρ

−aV
′
(ρ)

2ρ
v + 2βc(ρ)

)(
ρ

v

)
x

=
(

0

a(V (ρ) − v) + aV
′( 1

6ρ2
∂2ρ

∂x2 − 1
2ρ3

(
∂ρ

∂x

)2)
)

. (9)

The corresponding homogeneous inviscid system of (9) can be written as(
ρ

v

)
t

+

(
v ρ

−aV
′
(ρ)

2ρ
v + 2βc(ρ)

)(
ρ

v

)
x

= 0, (10)
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or ∂U
∂t

+ [A] ∂U
∂x

= 0 is strictly hyperbolic, with eigenvalues λ1 < λ2,

λ1,2 = v +
(
β ±

√
1 + β2

)
c(ρ) (11)

and right eigenvectors

r1(ρ, v) =
(

1,
(
β +

√
1 + β2

)c(ρ)

ρ

)t

, (12)

r2(ρ, v) =
(

1,
(
β −

√
1 + β2

)c(ρ)

ρ

)t

. (13)

Moreover, the two characteristic fields of (10) corresponding to the right eigenvectors are
genuinely nonlinear,

∇λ1(ρ, v)r1(ρ, v) = (
β +

√
1 + β2

) (
c′(ρ) +

c(ρ)

ρ

)
< 0 (14)

∇λ2(ρ, v)r2(ρ, v) = (
β −

√
1 + β2

) (
c′(ρ) +

c(ρ)

ρ

)
> 0 (15)

where ∇λ1,2 are the gradients of λ1,2 with respect to ρ and v; prime denotes the differentiation
with respect to ρ.

The homogeneous system (10) has two families of traffic sound waves, shock and
rarefaction waves; one family for each characteristic field. For the first characteristic field,
the properties of these waves are quantitatively identical to those of the LWR model because
of λ1 � v. But for the second characteristic field, the waves behave quite differently as they
travel faster than traffic (λ2 � v and ∇λ2(ρ, v)r2(ρ, v) > 0). This means that the future
conditions of the traffic flow will be affected by the traffic conditions behind the flow. This
type of behaviour, however, can be controlled by the factor β in our model. We call it the
anisotropic factor. Note that β � 1, the second characteristic approaches v, the velocity of
the traffic. Thus, information can never reach vehicles from behind. The term having this
anisotropic factor in the system (9) is known as the anisotropic term.

2.3. Linear stability analysis

Assuming ρ0 and v0 = V (ρ0) is the steady-state solution of equations (6) and (7). The
analogous criterion for the continuum model may be found by linearizing the model around
some initial values ρ0 and v0:

ρ = ρ0 + ρ̂. (16)

v = v0 + v̂. (17)

Taking Taylor series expansions of the perturbed equations at ρ0 and v0 leads to the perturbation
equations

∂ρ̂

∂t
+ ρ0

∂v̂

∂x
+ v0

∂ρ̂

∂x
= 0, (18)

and
∂v̂

∂t
+ v0

∂v̂

∂x
= a[V (ρ0)ρ̂ − v̂] + aV

′
[

1

2ρ0

∂ρ̂

∂x
+

1

6ρ2
0

∂2ρ̂

∂x2

]
− 2βc0

∂v̂

∂x
, (19)

where c0 = c(ρ0) and V
′ = V

′
(ρ0).
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The linear stability of the system (9) can be determined by examining the sinusoidal
solution of the perturbed equations (16) and (17). It is found that the system is stable when

ρ2
0 − 2βc0ρ0

V
′ < −

(
a(1 + β2)

2V
′

)
. (20)

The proof of the linear stability analysis can be found in appendix A of this paper. This
shows that the model is stable against all infinitesimal perturbations for inequality (20). There
is an intermediate range of density, 0 � ρc1 � ρ � ρc2 , in which V (ρ) is so sensitive to
change in ρ that homogeneous flow is unstable. As follows from inequality (20), one can find
the critical values (ρc1 and ρc2 ) from the equation

ρ2
0 − 2βc0ρ0

V
′ = −

(
a(1 + β2)

2V
′

)
. (21)

Note that for β = 0 we get

−
(

a

2ρ2
0V

′

)
> 1 (22)

which is exactly the stability criterion found by Berg et al [15].
Due to the presence of anisotropic parameter, the intermediate range of instability in our

model is different from Berg’s model [15]. This explains the basic difference between these
two models. These results are crucial in explaining the appearance of a ‘phantom traffic jam’,
which is observed in a real traffic flow. In this regime, the traffic flow breaks down and forms
the well-known stop-and-go pattern of a traffic jam [24].

It is easy to find out that the critical disturbances travel with a speed

C(ρ0) = V (ρ0) + V
′
(ρ0)

(
ρ0 +

aβ

2c0

)
, (23)

which is slower than the steady-state traffic speed v0 = V (ρ0), since V
′
is negative.

3. Travelling wave and shock

In this section, we study whether the new model smoothes out the shock waves of the LWR
model. Now we examine the travelling waves in traffic flow. A travelling wave is a stable
monotone and smooth wave from (ρ, v)(x − Ut) that travels at a constant speed U and
connects two constant states (ρ, v) (±∞).

Suppose that the new model admits a smooth travelling wave solution (ρ, v) (x − Ut):

ρ = ρ(X), v = v(X), X = x − Ut. (24)

Substituting the steady profile solution into equations (6) and (7), we have

−U
∂ρ

∂x
+

∂(vρ)

∂x
= 0 (25)

T

[
(v + 2βc − U)

∂v

∂x
− aV

′
(

1

2ρ

∂ρ

∂x
+

1

6ρ2

∂2ρ

∂x2

)]
= V − v. (26)

Integrating (25) and reformulating, we get

v = U − A

ρ
, (27)
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where A is a constant. Substituting (27) into (26), and multiplying ρ on both sides, we obtain

−T

[
(U − v)(U − (v + 2βc)) +

aV
′

2

]
∂ρ

∂x
−

(
aV

′

6ρ

)
∂2ρ

∂x2
= qe − Uρ + A, (28)

where qe = ρV (ρ). To find the curves between ρ1 at X = −∞ and ρ2 at X = ∞, we inserted
∂ρ

∂x
= ∂2ρ

∂x2 = 0, into equation (28). So U and A must satisfy

qe(ρ1) − Uρ1 + A = qe(ρ2) − Uρ2 + A = 0, (29)

thus the speed of the travelling wave is given by

U = qe(ρ1) − qe(ρ2)

ρ1 − ρ2
. (30)

Since qe(ρ) is a concave flow density function, there may only exist steady compression
waves, which implies that ρ1 < ρ2. This concave function also guarantees that the right-
hand side of equation (28) is always positive [20, 25, 30]. Therefore, when −T

[
(U − v)

(U − (v + 2βc)) + aV
′

2

]
remain positive within (ρ1,ρ2), then ∂ρ

∂x
> 0 as the coefficient of ∂2ρ

∂x2

is very small in comparison to the coefficient of ∂ρ

∂x
and we have a smooth travelling wave

solution.
For

−T

[
(U − v)(U − (v + 2βc)) +

aV
′

2

]
> 0, (31)

we have

v + βc − (√
β2 + 1

)
c < U < v + βc +

(√
β2 + 1

)
c. (32)

When condition (31) is not satisfied or the right-hand side of equation (28) changes its
sign at ρ∗ ∈ (ρ1, ρ2) then ∂ρ

∂x
becomes infinity at that point (ρ∗) and the wave profile turns

back. Since a single-valued continuous profile is no longer possible in this case, the analytical
solution does not have any physical meaning and it should be replaced by a weak solution
consisting of a discontinuity (i.e., a shock) [25, 30].

4. Numerical method

In this section, we review the numerical solution method. The following difference equations
are obtained by applying the finite difference method on the system of equations (6) and (7):

ρ
j+1
i = ρ

j

i +
�t

�x
ρ

j

i

(
v

j

i − v
j+1
i

)
+

�t

�x
v

j

i

(
ρ

j

i−1 − ρ
j

i

)
, (33)

(a) For heavy traffic (i.e. v
j

i < −2βc(ρ))

v
j+1
i = v

j

i +
�t

�x

(−2βc(ρ) − v
j

i

)(
v

j

i+1 − v
j

i

) − �t

T

(
v

j

i − V
)

+
�t

T
V

′
[(

ρ
j

i−1 − ρ
j

i

)
2�xρ

j

i

+

(
ρ

j

i−1 − 2ρ
j

i + ρ
j

i+1

)
6(�x)2

(
ρ

j

i

)2

]
. (34)
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(b) For light traffic (i.e. v
j

i � −2βc(ρ))

v
j+1
i = v

j

i +
�t

�x

(−2βc(ρ) − v
j

i

)(
v

j

i − v
j

i−1

) − �t

T

(
v

j

i − V
)

+
�t

T
V

′
[(

ρ
j

i−1 − ρ
j

i

)
2�xρ

j

i

+

(
ρ

j

i−1 − 2ρ
j

i + ρ
j

i+1

)
6(�x)2

(
ρ

j

i

)2

]
(35)

where i and j represent the road section and time respectively.
The above difference scheme is suitable for the traffic flow as it maintains the physical

properties of the traffic flow even under extreme conditions. For example, let us consider that
at any time t1, the density of any section x1 is zero, i.e. ρt1

x1
= 0, then we have

∂ρt1
x1

∂t
= 1

�x

[
ρ

t1
x1−1v

t1
x1

− ρt1
x1

v
t1
x1+1

]
. (36)

Since ρt1
x1

= 0 and ρ
t1
x1−1v

t1
x1

� 0, we get

∂ρt1
x1

∂t
� 0. (37)

This implies that the density will never be negative after the time t1. On the other hand, let us
assume that at any time t1, the density of any section is maximum, i.e. ρt1

x1
= ρm, then we have

vt1
x1

= 0 (as ρm is the jam density). (38)

Since ρ
t1
x1−1v

t1
x1

= 0 and ρt1
x1

v
t1
x1+1 � 0, we get

∂ρt1
x1

∂t
� 0, (39)

which implies that density cannot exceed the maximum density. We can apply similar types
of analyses also for the speed.

5. Shock and rarefaction waves

As already pointed out by Daganzo [18], the shock and rarefaction waves are the important
traffic flow conditions and the realistic description of shock fronts in traffic is a particularly
difficult problem. We have carried out numerical tests for two different values of anisotropic
parameter to investigate whether our model can describe these important traffic conditions.
Let us consider the two Riemann initial conditions, one describing congested upstream and
nearly free downstream and vice versa. These two conditions are

ρ1
u = 0.04 veh m−1 ρ1

d = 0.18 veh m−1, (40)

ρ2
u = 0.18 veh m−1 ρ2

d = 0.04 veh m−1, (41)

where ρu and ρd are upstream and downstream densities, respectively. These situations are the
realistic situations in traffic flow and can be described as follows: condition (40) corresponds
to a situation where a nearly free-flow traffic meets a queue of nearly stopping vehicles, i.e. a
shock wave situation, while condition (41) is just opposite to condition (40) and described as
a rarefaction wave situation.

For initial condition, we take

v1,2
u = V

(
ρ1,2

u

)
, v

1,2
d = V

(
ρ

1,2
d

)
(42)
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(a) (b)

(c) (d )

Figure 1. Shock and rarefaction waves under Riemann initial conditions (32) and (33) for β = 3:
(a) and (c) temporal development of density ρ(x, t); (b) and (d ) temporal development of speed
v(x, t). In (a) and (d ), the direction of the space axis is reversed for illustrative purposes.

where V (ρ) = vf

[
1 − exp

(
1 − exp

(
cm

vf

(
ρm

ρ
− 1

)))]
is the equilibrium speed–density

relationship, which is developed by Del Castillo et al [31]. Here vf is the free-flow speed, ρm

is the maximum or jam density and cm is the kinematic wave speed under jam density.
We have taken the test road section as 20 km long and for numerical calculations it is

divided into 100 meshes of equal length. The related parameters of our model are as follows:

vf = 30 m s−1, ρm = 0.2 veh m−1, T = 10 s and cm = 11 m s−1. (43)

Figures 1 and 2 depict the wave that develops from the Riemann initial conditions (40)
and (41) for two different values of anisotropic parameter β. It is clear from the figures 1 and 2
that the new model provides correct predictions under the two Riemann initial conditions.

Taking β = 3, we substitute the values into equations (30) and (32), and find out that
inequality (32) is not satisfied under the initial condition (40), which means that there should
be a shock under the given condition and the propagation speed of the shock is found to be
negative from equation (30). Figures 1(a) and (b) show how the backward moving shock wave
front evolves and figures 1(c) and (d ) describe how the rarefaction wave front evolves. It is
clear from figures 1(a) and (b) that the moving front is smoothed over time. Such types of
results are also found out by Jiang et al [25]. But figures 1(c) and (d ) cannot describe the
real traffic situation because the discontinuity cannot move with the initial shape as defined by
Berg et al [15]. To overcome this difficulty, we increase the value of β for β = 20, the graph
of velocity and density profile under the initial conditions (40) and (41) is given in figure 2,
which shows the consistency of our model with the real traffic flow. Hence the parameter β

plays a crucial role in making our model realistic.
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(a) (b)

(c) (d )

Figure 2. Shock and rarefaction waves under Riemann initial conditions (32) and (33) for β = 20:
(a) and (c) temporal development of density ρ(x, t); (b) and (d ) temporal development of speed
v(x, t). In (a) and (d ), the direction of the space axis is reversed for illustrative purposes.

6. Local cluster effect

The new anisotropic model can also describe the nonlinear theory of the cluster effect in a
traffic flow, i.e., the effect of the appearance of a region of high density and low average
velocity of vehicles in an initially homogeneous flow. To investigate the local cluster effect,
we apply the numerical scheme given in section 4. Let us consider the behaviour of a localized
perturbation, which at time t = 0, occurs in an initial homogeneous state of traffic flow and is
given by

ρ(x, 0) = ρh + �ρ(x) x ∈ [0, L] (44)

v(x, 0) = V (ρ(x, 0)) x ∈ [0, L]. (45)

For numerical investigation, the following shape of the localized perturbation is used as
in [24]

�ρ(x) = �ρ0

{
cosh−2

(
160

L

(
x − 5L

16

))
− 1

4
cosh−2

(
40

L

(
x − 11L

32

))}
, (46)

where L is the length of road section under consideration. The periodic boundary condition
for the simulation to describe the amplification of small disturbances is given by

ρ(L, t) = ρ(0, t), v(L, t) = v(0, t). (47)

For equilibrium speed–density relationship, we use the following relation proposed by Kerner
and Konhäuser [11]:

V (ρ) = uf


(

1 + exp

(
ρ

ρm
− 0.25

0.06

))−1

− 3.72 × 10−6


 . (48)
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(a) (b)

(c) (d )

(e) ( f )

Figure 3. Temporal evolution of traffic density on a ring road of circumference 32.2 km with
a homogeneous initial traffic under condition (41) and a localized perturbation of amplitude
�ρ0 = 0.01 veh m−1 for (a) ρh = 0.05 veh m−1; (b) ρh = 0.06 veh m−1; (c) ρh = 0.07 veh m−1;
(d ) ρh = 0.08 veh m−1; (e) ρh = 0.09 veh m−1; (f ) ρh = 0.1 veh m−1.

For computational purpose, the space domain is divided into equal intervals of length
200 m and time interval is chosen as 1 s.

We take two different sets of parameter to show that our model can also describe the local
cluster effect of traffic flow [11, 21, 24]:

β = 6.0, uf = 125 m s−1, T = 14 s and ρm = 0.25 veh m−1 (49)

β = 20.0, uf = 170 m s−1, T = 25 s and ρm = 0.9 veh m−1. (50)

The critical values corresponding to the parameters (49) and (50) are 0.060 367, 0.092 182
and 0.250 102, 0.292 249, respectively, which can easily be found out by substituting the
parameter values into the stability condition (21). The traffic flow will be unstable between
these critical densities. Taking different values of initial density for both sets of parameters,
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(a) (b)

(c) (d )

(e)

(g)

( f )

Figure 4. Temporal evolution of traffic density on a ring road of circumference 32.2 km with
a homogeneous initial traffic under condition (42) and a localized perturbation of amplitude
�ρ0 = 0.01 veh m−1 for (a) ρh = 0.24 veh m−1; (b) ρh = 0.25 veh m−1; (c) ρh = 0.26 veh m−1;
(d ) ρh = 0.27 veh m−1; (e) ρh = 0.28 veh m−1; (f ) ρh = 0.29 veh m−1; (g) ρh = 0.3 veh m−1.

we investigate the traffic density pattern with respect to time and results for two different
values of β are shown in figures 3 and 4.
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In figure 3(a), the traffic flow density is very low and the perturbation dies out with time,
which shows a good agreement with the Herrman and Kerner theory [24] that below the critical
density, the initially homogeneous state of traffic flow is stable with respect to the growth of
any non-homogeneous perturbations with small enough amplitudes. As the initial density
increases, the amplitude of the initial small perturbations grows in time. Figure 3(b) shows
that when the initial density is just above the down critical density a complex localized structure
of two clusters forms. This situation corresponds to stop-and-go traffic. Further increase in
initial density leads to a dipole-like structure as illustrated by figures 3(c) and (d ). In figure 3(d )
the density of the cluster increases more rapidly than in figure 3(c). It is clear from figure 3(e)
that the non-homogeneous perturbations are slowly amplified when the initial density is nearer
to the up critical density. Finally, when the density becomes greater than the up critical density,
a stable regime is reached again as can be seen in figure 3(f ).

Similarly, figure 4 describes the growth of the localized perturbation for different values
of initial density with the parameters given in equation (50). The results are found to be the
same as results for the parameter values in (49) and shown graphically by figures 3(a)–(f ).
It is observed that for β = 20, the shape of the cluster for different initial data is the same.
Figure 4 illustrates that with the growth of the small amplitude perturbations, a non-stationary
cluster forms. Firstly, the perturbation decreases and as time increases the amplitude of the
perturbation increases. The cluster of vehicles represents a locally moving region, where the
density is higher and the average velocity is lower than the initial flow and outside the cluster.

Therefore for both the values of anisotropic parameter, the above results show a good
agreement with the results found by Kerner and Konhäuser [11, 21], Herrman and Kerner [24],
Jiang et al [25] and Treiber et al [32].

7. Conclusion

In traffic flow, in spite of its simplicity the LWR model is a remarkably robust and powerful
theory, but it is unable to describe the important traffic phenomena, such as vehicle clustering.
In the literature of macroscopic traffic theory, especially that of higher order models, the
research on the shock and rarefaction waves and the cluster effect has an important significance.
In this paper, we investigated numerically the shock and rarefaction waves together with
the vehicle clustering in the anisotropic continuum model. We presented a simple finite
difference scheme to carry out the numerical simulation and discuss the applicability of the
scheme in some special cases. Travelling and shock wave solutions are given in section 3.
To discuss the performance of the model, we take two different values of the anisotropic
parameter. Finally, the numerical tests verify that the model is able to simulate complex traffic
phenomena observed in traffic flow, such as shock waves, rarefaction waves and local cluster
effects. Comparing the numerical results with those presented by Jiang et al [25], Kerner
and Konhäuser [11, 21], we find that the clusters have almost the same structure for different
values of the anisotropic parameter. Our model is analogous to the Kerner–Konhäuser model
[11]. However, an important difference between Kerner–Konhäuser model and the new model
lies in the coefficient of the higher order terms. In Kerner–Konhäuser model, the coefficients
are assumed to be constant but in our model they actually depend on density (ρ). This clarifies
that the analysis of the new model is an improvement over the higher order models presented
in the literature.

Further investigations need to be carried out to test the performance of the new anisotropic
continuum model in modelling real traffic. So it may be reasonable to conclude that the new
model provides a more accurate description of traffic flow and results obtained are consistent
with the spectrum of nonlinear dynamic properties reported in the literature.
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Appendix

To determine the stability condition of the system (9), we calculate the eigenvalue ω(k) of a
harmonic disturbance

f (x, t) =
(

ρ̂(x, t)

v̂(x, t)

)
=

(
ρ̂0

v̂0

)
exp{i[kx − ω(k)t]}, (A1)

so that we can rewrite equations (18) and (19) in the form(
i(kv0 − ω) ikρ0

−aV
′ − aikV

′

2ρ0
+ aV

′
k2

6ρ2
0

i(kv0 − ω) + a + 2βc0ik

) (
ρ̂0

v̂0

)
exp{i[kx − ω(k)t]} = 0, (A2)

for nontrivial solution∣∣∣∣∣
i(kv0 − ω) ikρ0

−aV
′ − aikV

′

2ρ0
+ aV

′
k2

6ρ2
0

i(kv0 − ω) + a + 2βc0ik

∣∣∣∣∣ = 0. (A3)

On solving this, we get

ω1,2(k) = k(v0 + βc0) − ai

2


1 ±

√
1 +

2V
′

a

(
k2(β2 + 1) − aiβk

c0
− 2ikρ0 +

ik3

3ρ0

) 
 . (A4)

The traffic flow will remain stable as long as the imaginary part of ω is negative.
Define

�(k) = Re

[
1 +

2V
′

a

(
k2(β2 + 1) − aiβk

c0
− 2ikρ0 +

ik3

3ρ0

)] 1
2

, (A5)

the criterion is equivalent to |�(k)| < 1, and

|�(k)| =

(

1 +
2V

′

a
k2(β2 + 1)

)2

+

(
4βkc0

a
− 4kρ0V

′

a
+

2k3V
′

3aρ0

)2



1
4 √

1 + cos φ

2
, (A6)

where

φ = arg

[
1 +

2V
′

a

(
k2(β2 + 1) − aiβk

c0
− 2ikρ0 +

ik3

3ρ0

)]
. (A7)

Solving |�(k)| = 1 leads to three solutions

k0 = 0, k± =

√√√√
6

(
ρ2

0 − βc0ρ0

V
′

)
± 3aρ0

V
′

√
−2V

′

a
(1 + 2β2). (A8)

We know that V
′
< 0 and k− is always real whereas k+ might be either real or complex.

As pointed out by Berg et al [15] the system is stable when k+ /∈ R, which means that

6

(
ρ2

0 − βc0ρ0

V
′

)
+

3aρ0

V
′

√
−2V

′

a
(1 + 2β2) < 0 (A9)

or

ρ2
0 − 2βc0ρ0

V
′ < −

(
a(1 + β2)

2V
′

)
. (A10)
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